DeepMetricEye - Metric Depth Estimation in Periocular VR Imagery

  • Yitong Sun
  • Zijian Zhou
  • Cyriel Diels
  • Ali Asadipour

Abstract

VR headsets often cause eye strain, yet eye-facing cameras only supply relative depth. We introduce a lightweight U-Net 3+ model that predicts metric 3-D periocular depth from a single monocular camera on any headset, enabling precise light-stimulus estimation. To sidestep scarce real data, we build a Dynamic Periocular Data Generation pipeline with UE MetaHuman, producing thousands of synthetic images from limited scans. Tested on 36 participants, the system delivers high global depth accuracy and trustworthy pupil-diameter readings, offering a practical basis for VR eye-health assessment.

Published in: interactives - Vol.1 No.1 (2025)Full Paper

Publication Date: July 1, 2025

ISSN: 2755-6336

Keywords

Computer visionHCI

Cite or

Sun, Y., Zhou, Z., Diels, C., & Asadipour, A. (2025). DeepMetricEye - Metric Depth Estimation in Periocular VR Imagery. interactives, 1(1). https://doi.org/10.64560/32131242