Participatory Evolution of Artificial Life Systems via Semantic Feedback
- Minglu Fang
- Kexin Wang
- Longxuan Yu
- Ziling Zeng
- Jiahui Zhao
- Yifei Hu
- Ali Asadipour
- Yitong Sun
Abstract
We present a semantic feedback framework that enables natural language to guide the evolution of artificial life systems. Integrating a prompt-to-parameter encoder, a CMA-ES optimizer, and CLIP-based evaluation, the system allows user intent to modulate both visual outcomes and underlying behavioral rules. Implemented in an interactive ecosystem simulation, the framework supports prompt refinement, multi-agent interaction, and emergent rule synthesis. User studies show improved semantic alignment over manual tuning and demonstrate the system’s potential as a platform for participatory generative design and open-ended evolution.
Published in: interactivesPreprint
Publication Date: July 2, 2025
ISSN: 2755-6336
Keywords
Cite or
Fang, M., Wang, K., Yu, L., Zeng, Z., Zhao, J., Hu, Y., Asadipour, A., & Sun, Y. (2025). Participatory Evolution of Artificial Life Systems via Semantic Feedback [Preprint]. interactives. https://doi.org/10.64560/32131236