Participatory Evolution of Artificial Life Systems via Semantic Feedback

  • Minglu Fang
  • Kexin Wang
  • Longxuan Yu
  • Ziling Zeng
  • Jiahui Zhao
  • Yifei Hu
  • Ali Asadipour
  • Yitong Sun

Abstract

We present a semantic feedback framework that enables natural language to guide the evolution of artificial life systems. Integrating a prompt-to-parameter encoder, a CMA-ES optimizer, and CLIP-based evaluation, the system allows user intent to modulate both visual outcomes and underlying behavioral rules. Implemented in an interactive ecosystem simulation, the framework supports prompt refinement, multi-agent interaction, and emergent rule synthesis. User studies show improved semantic alignment over manual tuning and demonstrate the system’s potential as a platform for participatory generative design and open-ended evolution.

Published in: interactivesPreprint

Publication Date: July 2, 2025

ISSN: 2755-6336

Keywords

Artificial lifeMedia arts

Cite or

Fang, M., Wang, K., Yu, L., Zeng, Z., Zhao, J., Hu, Y., Asadipour, A., & Sun, Y. (2025). Participatory Evolution of Artificial Life Systems via Semantic Feedback [Preprint]. interactives. https://doi.org/10.64560/32131236