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Abstract: To support AI-driven urban search-and-rescue training, we present a real-time, high-

fidelity earthquake-simulation platform built on Unreal Engine’s Chaos physics. Unlike traditional

single-building models, our system delivers city-scale visual realism and instantaneous structural-

damage feedback. A genetic algorithm translates material parameters validated in Ansys to

Chaos’s fracture solver, aligning deformation results while maintaining real-time speed. Authentic

earthquake waveforms drive the scene, reproducing historical shaking patterns. All functions are

wrapped in a zero-code visual interface, letting seismologists, roboticists, and game developers

test scenarios without programming. We demonstrate the platform on three AI benchmarks—

similarity detection, autonomous path planning, and semantic image segmentation—showing

reliable damage cues for perception and decision networks.

Tags: Earthquake Simulation, Unreal Engine

1 Introduction

Earthquakes are frequent natural disasters that significantly affect human life and economic

activities (Joseph, 2022). To mitigate their adverse effects and improve the effectiveness of post-

earthquake rescue operations, a paradigm shift toward integrating artificial intelligence (AI) and

robotics has been observed (Nazarova & Zhai, 2020). These technologies, which include tasks such

as path planning, automatic obstacle avoidance, and image recognition, significantly enhance the

efficiency of responses to earthquakes (Magid et al., 2019). Iterative training of AI in simulation

environments has been widely recognized as an effective method (Duan et al., 2022). However,

traditional earthquake simulation systems often focus on incorporating complex multiple factors in

their calculations, which fails to meet the real-time responsiveness required for a variety of AI

models and the high fidelity needed for computer vision recognition. Consequently, there is an
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urgent need to create a user-friendly simulation platform capable of generating countless realistic

earthquake scenarios for iterative training of AI models.

While game engines have become powerful tools for simulating various disaster scenarios, such as

firestorms or flash floods (Bourhim & Cherkaoui, 2020), their potential for earthquake simulations

has yet to be fully explored. Earthquake simulations are regarded as inherently complex systems,

particularly in terms of material simulation. The diversity of building materials and structures

presents significant challenges. The primary optimization goal of current game engines is to ensure

real-time performance, which has led to parameter simplification. This results in a conflict with

scientific applications that involve intensive calculations of multiple parameters. Consequently,

these engines cannot be directly used for scientific simulations without modifications or

calibrations. Despite this, compared to traditional simulation methods, game engines not only offer

simplified operations and efficiency but also provide richer plugins and reusable virtual assets.

Additionally, the adoption of advanced realistic rendering techniques, including ray tracing, is

beginning to replace the need for real-world data, revolutionizing research in visual recognition

(Greff et al., 2022). However, the application of these sophisticated techniques and tools

specifically for earthquake simulations within virtual environments remains an underdeveloped

area in current research.

To address this gap, we introduce RESenv — A Realistic Earthquake Simulation Environment,

utilizing the Chaos physics system within Unreal Engine 5 (UE5). The RESenv workflow begins by

simulating ideal building material parameters using Ansys Explicit Dynamics for fracture

simulations. Subsequently, the results from Ansys are aligned with the parameters of the UE

Destruction system through a genetic algorithm, creating a material library. This parameter

alignment step not only brings UE's material fracture results comparable with Ansys but also does

not increase the computational load, laying a foundation for executing real-time high-fidelity

simulations. Furthermore, RESenv employs UE's Physics Constraint Actor (UEPCA) to automatically

bind building foundations, accurately transmitting terrain vibrations and stresses to the structures,

thus mirroring real earthquake phenomena. In practical tests, we introduce a random pre-fracture

parameter in UE to simulate various outcomes, thereby covering as many potentialities of building

damage as possible. Additionally, RESenv utilizes a user interface (UI) plugin to retrieve real

earthquake waveform data from online databases and applies it to the virtual terrain in UE to

accurately reproduce the terrain movements observed in actual earthquake events. The aim of

RESenv is to leverage UE's high-performance, real-time simulation capabilities to closely emulate

the destruction caused by real earthquakes. The overarching goal is to provide a training platform

for AI, VR, and robotics, offering real-time interactive, high-resolution, and high-fidelity earthquake

scenario simulations. This not only aids in search and rescue mission planning but also serves as a

valuable synthetic data reservoir for AI training in various applications, such as path planning and

visual recognition.

This paper is an extension of our conference paper, "RESenv: A realistic earthquake simulation

environment based on Unreal Engine" (Sun et al., 2023). Significant improvements include a

detailed discussion of the material calibration process integrated with Ansys Explicit Dynamics,
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and enhancements to the method of binding building foundations in UE.

Our key contributions in this study include:

Enhanced Simulation Accuracy: Our RESenv environment utilizes a designed

genetic algorithm to align Ansys material simulation results with the UE Fracture

system, substantially enhancing the realism and accuracy of earthquake

simulations executed by UE.

Real Earthquake Data Integration: Our RESenv binds real-time earthquake data to

UE's virtual terrain and automates the physical binding of building foundations,

accurately replicating the terrain movements and stress transmission observed in

actual earthquakes.

Simplified and Automated Workflow: The visualization and automation features of

RESenv significantly reduce the complexity of conducting simulations. Empirical

validations have demonstrated RESenv's effectiveness in mimicking architectural

earthquake damage, as well as in training AI for visual recognition and path

planning tasks.

2 Related Work

This section reviews research related to earthquake simulation and AI training for rescue missions,

which form the basis for our proposed UE-based earthquake simulation approach.

2.1 Earthquake Simulation

Earthquake simulation, a longstanding research focus in geophysics, geology, and engineering

(Matin & Pradhan, 2022), has seen significant advancements due to recent progress in computer

hardware. This has enabled more sophisticated modeling of earthquakes and consequent building

damage using numerical simulation techniques (Shaw et al., 2022; Xu et al., 2020). Stress

simulations of individual buildings, initially aimed at analyzing earthquake stress-induced

deformation and structural optimization, have matured, and some researchers have employed finite

element analysis (FEA) for assessing earthquake-induced building damage and exploring risk

mitigation strategies (McKenna, 2011; Xu et al., 2018). However, due to real-world buildings'

structural complexity, material diversity, and computational constraints, most simulations only

model primary load-bearing structures and facades, resulting in discrepancies between simulated

and actual outcomes. Current earthquake platforms, constrained by the complexity of the physics

engine limits and simulating only single or two degree-of-freedom (DOF) vibrations, fail to mimic

the three DOF motions of actual earthquakes (McEntee, 2022; Oleson, 2022).
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Urban multi-building simulations, compared to individual building simulations, emerged much later.

One of the most widely used frameworks is HAZUS, developed by the United States Federal

Emergency Management Agency (FEMA) (Schneider & Schauer, 2006). Based on standardized

Geographic Information System (GIS) methodologies, HAZUS is employed for estimating the impact

of earthquakes, post-earthquake fires, floods, and hurricanes, among other disasters. To overcome

the limitations of HAZUS's single DOF model, Japanese researchers introduced the Integrated

Earthquake Simulation (IES) framework, utilizing multi-dimensional data fusion calculation methods

(Hori, 2011). Subsequently, Turkish researchers developed a regional building simulation method for

Istanbul using MATLAB, based on the IES framework (Sahin et al., 2016). Similar to individual

building simulations, multi-building simulations are also constrained by software limitations in

terms of physical collisions and building structural complexity. Although a study by David et al.

employed large-scale computing to simulate the motion of geological faults and measure building

responses (McCallen et al., 2021), the focus of this research predominantly lies in calculating the

complexity of geological structures, with scant attention paid to the fidelity of building structures.

Ansys has been proven to offer high precision and reliability in material benchmark testing and

dynamic earthquake simulations (Taylan & Ayd, 2018). Ansys Explicit Dynamics is specifically

designed to handle complex, highly nonlinear problems, essential for accurate fracture simulations

that require analysis of rapid impact interactions within materials, effectively simulating the impacts

experienced by building structures during earthquakes. Additionally, it efficiently calculates

material responses under short-duration, severe loading conditions encountered during

earthquakes, making it highly suitable for simulating earthquake-induced material damage.

Furthermore, its pre-built comprehensive material library allows for detailed testing of diverse

building materials, significantly easing the workload for cross-disciplinary developers.

In our approach, we utilize the Chaos destruction system and Nanite visualization system within

UE5 game engine. This integration facilitates previously challenging fracture and fragmentation

simulations for various materials and complex hybrid structures, enables accurate physical

collisions, and supports three degrees of freedom (DOF) in geological motion. To further enhance

the accuracy and realism of these simulations, we have incorporated the RESenv Material

Calibration Bridge, which seamlessly integrates Ansys Explicit Dynamics simulation results into the

UE Destruction system. This bridge allows for the precise calibration of material properties based

on real-world data, significantly enhancing the fidelity of fracture simulations within UE5. Our

method demonstrates a significant improvement in computational efficiency and cost compared to

conventional techniques, enabling real-time and accelerated calculations on consumer-grade

computers.

2.2 AI Training for Rescue Missions

AI applications in search and rescue operations, as well as the robotics domain, are becoming

increasingly widespread. Numerous researchers are dedicated to employing deep learning and

reinforcement learning techniques for complex terrain path planning, image recognition, and other

related tasks (Costa & Silva, 2019; Queralta et al., 2020). For instance, the study by LinLin et al.

Full | DOI:1234.5678 | Vol.1 No.1 (2025)

04

https://interactives.pub/


utilized the SBMPC algorithm to investigate path planning problems for search and rescue robots

(Wang & Pan, 2020). Xuexi et al. explored indoor search and rescue using Simultaneous Localization

and Mapping (SLAM) and Light Detection and Ranging (LiDAR) methods (Zhang et al., 2020).

Farzad's research introduced the application of deep reinforcement learning (DRL) methods in

search and rescue robot tasks (Niroui et al., 2019). These studies underscore the potential of

artificial intelligence in enhancing the effectiveness and efficiency of search and rescue missions.

The success of AI approaches largely depends on the availability of ample and high-quality data as

training inputs, which can accurately represent the complexities and dynamics of environments

affected by earthquakes (Bischke et al., 2019). However, in earthquake rescue scenarios, collecting

and obtaining real-world data poses significant challenges. To address data limitations,

researchers have developed various virtual environments, such as the RoboCup Rescue Simulation

Environment (Skinner & Ramchurn, 2010), USARSim (Polverari et al., 2007), and the BCB

environment developed by Laurea University of Applied Sciences (Grunwald et al., 2018), for

creating training data for deep learning and reinforcement learning algorithms in search and rescue

operations. Nonetheless, these frameworks currently lack the level of texture rendering realism

and detail richness required for training AI models that rely on image recognition and depth data

inputs. This also results in substantial discrepancies between the volume and complexity of

simulated scenarios and actual search and rescue missions.

Our proposed simulation environment fills this void by aiming to provide a highly realistic and

detailed virtual earthquake damage environment using a ray-tracing system and authentic scanned

textures. The environment allows for generating high-quality training data that can be directly used

for AI algorithm visual recognition and depth data scanning. Weather phenomena, lighting

conditions, and post-earthquake dust will be effectively simulated.

Figure 1: Flowchart of RESenv for earthquake simulation, encompassing four stages: Material calibration, Scenario

preparation, Data binding, and Simulation. Material calibration: The RESenv Material Calibration Bridge utilizes data

simulated in Ansys Explicit Dynamics as a benchmark to optimize the UE Fracture settings. The calibrated materials

are stored in the RESenv material library. Scenario preparation: 3D building models are imported into Unreal Engine

and assigned fracture settings from the RESenv material library. Actual earthquake wave data is acquired from the

IRIS online database and imported through a graphical user interface system. Data binding: 3D buildings are bound

to the virtual terrain using UEPCA via an automated analysis program. The earthquake wave data is converted into

terrain displacements for binding. Simulation: RESenv operates at specified frame rates: 40 FPS for desktop

computer simulation, 90 FPS for VR training, and 240 FPS for high frame rate sensor training. As the simulation

commences, the earthquake wave data displaces the terrain, which in turn causes the pre-fractured 3D buildings to

be destroyed. RESenv remains interactive throughout the simulation.

Full | DOI:1234.5678 | Vol.1 No.1 (2025)

05

https://interactives.pub/


3 Method

RESenv executes the earthquake simulation in a four-stage process: material calibration, data

preparation, data binding, and simulation. Figure 1 illustrates the diagrammatic representation of

the aforementioned stages.

3.1 Material Calibration

The Issue of UE Chaos Destruction System The UE Destruction system utilizes the latest Chaos

physics engine, enabling precise pre-fracturing of geometries to define their destruction behavior

during run-time simulations. This pre-fracturing facilitates the pre-generation of fragment objects

complete with collision boundaries and cluster connections, thereby enabling real-time interactions

with collisions and physical constraints. Compared to traditional physical simulation methods,

which demand substantial computational resources, the UE Destruction system offers a real-time

interactable platform foundation for simulations.

However, there are two main limitations in the current UE Destruction system that hinder accurate

physical simulations. Firstly, the pre-fracturing feature only allows designers to visually fracture

geometries into fragment groups using predefined graphic patterns, rather than employing

calculations based on actual material properties (Fracturing Geometry Collections User Guide,

2024). This approach results in deformations and fracture shapes during collisions that do not

accurately represent real-world phenomena. Secondly, the stress values recorded in the cluster

links between fragment groups are not expressed in standard physical units, thereby precluding

calculations based on physical formulas. Consequently, for applications like earthquake

simulations, where precise physical calculations are crucial to accurately mimic real-world

dynamics, the UE Destruction System cannot be applied directly without calibrations.

To address the aforementioned limitations and achieve realistic earthquake fracture simulations in

UE, we propose a material calibration workflow for the UE Destruction system. This workflow

initially employs the Ansys Explicit Dynamics system to conduct physical simulations on various

calibrated building materials, strictly adhering to real-world testing standards. The outcomes of

these simulations are then exported to serve as calibration benchmark data for UE Fracture.

Subsequently, We have specifically designed a genetic algorithm (developed in C++ as a UE plugin)

that quantifies the differences between the simulation results of Ansys and UE, and automatically

iterates and optimizes the fracture parameters of materials in UE. This process ensures that the

material fracture behavior approximates the results of Ansys simulations without altering the UE

physics engine. Ultimately, the calibrated material parameters are stored in the RESenv material

library for future application to building geometry assets for simulation.

Figure 2 demonstrates an example of the calibration of two construction materials using the

RESenv Material Calibration Workflow, and compares the destruction results with the default

parameters of UE Fracture. The left material, a 35 MPa concrete is subjected to a fracture test in
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Ansys using the ASTM C293 standard (International, 2021), followed by iterative optimization via

the calibration bridge. On the right side, a masonry assemblage (brick wall) is optimized using the

workflow with the ASTM E519 standard (International, 2022). Compared to the default parameters

of UE Fracture, which nearly fail to accurately represent the physical material's fracture behavior,

the geometric assets calibrated through the RESenv workflow achieved comparable results in UE

fracture simulation to those of Ansys simulations, particularly in terms of crack patterns and stress

distribution.

Figure 2: Comparative Visualization of Material Fracture Simulations between Default UE Fracture Settings and

RESenv Material Calibration. The image showcases two sets of material tests. On the left, a concrete fracture test

based on ASTM C293; on the right, a masonry assemblage fracture test based on ASTM E519. For each material,

the top panels display the setup and results visualized using Ansys Explicit Dynamics, tailored to specific test

standards and material properties. The bottom left panels show the results of the simulations using default UE

Fracture settings, while the bottom right panels illustrate the outcomes after iterative optimization via the RESenv

Material Calibration Bridge. Each pair demonstrates a significant enhancement in the fidelity of destruction

simulations, particularly in crack patterns and stress distribution, through calibrated fracture settings compared to

the default.

Ansys Simulation The RESenv workflow is implemented in Ansys Workbench 2024 R1, utilizing the

Explicit Dynamics simulation environment. The workflow in Ansys includes setting material

properties according to different real-world testing standards, importing test geometries, defining

simulation conditions, and exporting the results to the Material Calibration Bridge.

Materials can be prepared through three channels based on different testing standards, facilitating

rapid development for developers:
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Importing from the built-in Explicit Material library.

Importing from the Ansys GRANTA Material Database.

Creating custom materials based on tested parameters.

In the example shown in Figure 2, the 35 MPa concrete is sourced from the Explicit Material library

(Riedel et al., 2009), while the masonry assemblage composite material is set based on research by

Parker et al. (Parker et al., 2019). The materials used for the support and pressure bodies are the

default Structural Steel.

Geometries are imported or created using Ansys modeling tools according to specific dimensions

and test requirements of the standards. Once placed in the model, the prepared materials are

assigned to geometries and Ansys mesh segmentation is executed. Subsequent steps include

defining initial simulation conditions according to standards, such as constant support, and the

velocity and direction of the pressure body, before commencing the simulation.

After the simulation concludes, the Ansys Python Result tool is used to export the solved

simulation parameters from the solution worksheet to the RESenv Material Calibration Bridge,

enabling subsequent optimization and calibration of UE Fracture settings for materials.

RESenv Material Calibration Bridge The RESenv Material Calibration Bridge aims to iteratively

optimize the UE Fracture settings for different materials, using Ansys simulation parameters as a

benchmark. After synchronizing the common parameters in UE with Ansys test conditions (including

gravity, friction, damping, mass, inertia tensor, elasticity, constraints, collision detection, initial

velocity, and test duration), the optimization focuses on two key areas: 1. the morphology and

density of the fractured segment groups within the UE geometries; 2. the initial link stress values

among the fractured segments.

The calibration workflow can be mathematically formalized as a non-convex optimization problem.

That is we would like to find the optimal value of damage threshold  and fracturing numbers  for

each material. When using UE's default random Voronoi tessellation, we randomly a set of points

 in the interior of the object, and denote their position under Ansys simulation  as

ground truth. We want to optimize the UE fracture simulation  on the following

metric:

To optimize the parameters of the UE fracture simulation, we employ a genetic algorithm that

integrates Rank Selection and Two-Point Crossover with a Fitness Function and Mutation strategy.

The Fitness Function, , is designed to quantify the accuracy of the UE simulation

compared to the Ansys benchmark. Specifically,  is defined as the negative sum of

squared errors between the UE simulation results  and the corresponding Ansys
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results  over a set of points . The objective is to maximize , which is

equivalent to minimizing the discrepancy between the two simulations.

We utilize Rank Selection to select individuals from the population based on their fitness. In this

method, individuals are ranked according to their fitness scores, and selection probabilities are

assigned proportionally to their rank, not directly to their fitness values. This approach mitigates

the issue of premature convergence by maintaining population diversity, especially when fitness

differences are minimal. The selection probability for an individual with rank  is given by

, where  denotes the population size.

Once individuals are selected, Two-Point Crossover is applied to generate new offspring. In this

crossover strategy, two crossover points  and  are randomly selected along the gene

sequences of the parent individuals  and . The segments of the genes between

these points are exchanged to produce a new offspring , thereby allowing a robust

exploration of the solution space. For a more general case where  and  are vectors of

parameters, the weighted combination can be extended as:

where each  is independently selected from a uniform distribution . This approach

ensures that the offspring values lie within the range defined by the parent values, promoting

diversity while retaining characteristics of both parents.

To ensure sufficient genetic diversity and avoid local optima, we incorporate a Mutation operation

with a predefined low-probability . The Mutation perturbs the offspring's genes by adding a

small random value  to both  and . The perturbation  is drawn from a Gaussian distribution

 or , where  and  are the standard deviations that control the

magnitude of mutation.

The genetic algorithm iteratively evolves the population by evaluating the fitness of each new

generation, selecting the most promising individuals, and applying crossover and mutation

operations until convergence criteria are met. In our experiment, we set the terminate criteria to be

The final output of this process is the set of parameters  that maximize the fitness

function, thereby ensuring that the UE fracture simulation closely aligns with the Ansys benchmark.

We use , , .

The RESenv Material Calibration Bridge is developed in C++ and can be loaded as a plugin into the

Unreal Engine UI. This facilitates the bridging of data from Ansys and the management of the UE

Fracture material library. It greatly simplifies the process for developers to customize and calibrate

additional materials while avoiding the need to install external programs and configure data

interfaces.
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The Material Calibration Bridge represents a crucial step towards enabling high-fidelity simulations

within the UE Destruction system, focusing specifically on material properties. Through parameter

bridging, RESenv maintains UE's real-time interactivity and authentic visual rendering, while

incorporating the physical simulation capabilities of Ansys.

3.2 Data Preparing

This phase involves importing architectural models into the UE environment, applying fracture

settings from the RESenv material library to the architectural models and acquiring earthquake

wave data from online database.

Figure 3: Material Preview UI of the RESenv Calibration Bridge Plugin. The image displays three material examples:

concrete, brick wall, and stone. Each example showcases texture rendering previews, fracture segmentation

previews, and exploded views of fragments after applying fracture settings from the RESenv material library. The

interface allows developers to intuitively select and finely adjust parameters for each material type.

Virtual Building Processing Due to the flexibility in model importation within UE, virtual building

models represented as polygonal meshes can be acquired from various sources. For instance, they

can be manually created using modeling software like Blender, computed from GIS data in

CityEngine software (Badwi et al., 2022), or generated via AI methods (Chaillou, 2019). However, to

ensure that the building models can be effectively simulated, the models first need to be pre-

processed before being imported into our method through UE. Initially, the size units of the models

need to be standardized. Typically, Polygon Mesh-based models do not have a unified scale unit
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like NURBS Surface models; therefore, the models need to be scaled to align with the cross-

platform unified units. In RESenv, the default length unit in UE5, the centimeter, is adopted.

Subsequently, once the architectural models are imported into UE, the pre-calibrated fracture

settings are retrieved from the RESenv material library and applied to the geometries based on the

materials of the buildings. As shown in Figure 3, we have specifically developed a material preview

visualization interface for the RESenv Material Calibration Bridge plugin to enable developers to

intuitively select and fine-tune materials.

Figure 4: The RESenv user interface for acquiring IRIS online earthquake data. The user interface contains an

interactive world map that can be clicked on to select the earthquake data to be acquired. The column on the right

side allows to define time ranges and earthquake levels as a filter.

Earthquake Wave Data Acquisition The earthquake waveforms used by earthquake simulation

can be divided into two categories. 1) waveforms recorded from actual earthquakes that have

already occurred. These waveforms can be obtained from publicly available datasets online. An

earthquake event is often recorded by multiple seismometers located at different geographical

locations; by cross-comparing and applying algorithms for noise reduction, the absolute motion of

the Earth's surface can be authentically reproduced in simulation platforms. 2) waveforms

synthesized through algorithms (Moseley et al., 2018, p. m oseley2020deep). In earthquake

resistance testing of buildings, researchers have developed various methods to synthesize

earthquake waveforms in order to assess the impact of different levels and types of earthquakes

on building structures. This enables the simulation platform to carry out unlimited iterations of
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earthquake tests in any conditions. Our method primarily aims to simulate the damage sustained by

urban buildings in actual earthquakes to provide realistic datasets for AI visual-based training;

therefore, the method initially implements the simulation of global earthquake waveforms obtained

from the IRIS online database (IRIS Data Services, 2024). The acquired earthquake waveform data

records three DOF of geological movement, named "BH1" (east-west direction), "BH2" (north-south

direction), and "BHZ" (vertical direction). We have implemented a user-friendly user interface (UI)

and Python-based automatic format conversion program in UE (Figure 4), enabling users to directly

obtain earthquake waveforms by clicking on the geographical location and event occurrence time

on the global map without the need for complex data searches and imports. Once the user selects

the required data, the waveforms are automatically converted into a "DataTable" file supported by

UE.

Figure 5: Simplified Principles of Building Binding in RESenv. The algorithm developed identifies fragments at the

base of the building geometry and their contact meshes with the ground. A UE Physics Constraint Actor (UEPCA) is

then created for each contact mesh and bound to the virtual terrain.

3.3 Data Binding with Virtual Terrain

In the real world, structures are anchored to the ground, responding dynamically to forces from

earthquake activities. Mimicking this, our method endeavors to realistically simulate the anchor

forces exerted on buildings during ground movements. Consequently, the RESenv necessitates the

presence of a virtual terrain within UE to serve as the anchoring ground, binding the movements

generated by the earthquake data.

RESenv employs the UE "Physics Constraint Actor" (UEPCA) (Physics Constraints in Unreal Engine,

2024) from the UE physics system to bind individual buildings to the virtual terrain. This method
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effectively constraints linear movements and rotations within the Cartesian coordinate system and

allows for custom detachment thresholds, aligning with the requirements of simulating building-

ground interactions during earthquakes.

Simplified Principles of Foundation Binding in RESenv: As Demonstrated in Figure 5, the foundation

binding in RESenv operates on a simplified principle. Specifically, we have developed a algorithm

that identifies the fragments at the base of the building geometry and their contact meshes with

the ground. The algorithm then creates a UEPCA for each of these meshes and binds them to the

virtual terrain. This design offers three advantages:

Customizable Binding Rules: Developers can adjust the detachment stress and

movement constraints based on different building types, for instance, wooden or

concrete structures. This flexibility supports secondary development of constraint

rules tailored to specific architectural needs.

Realistic Simulation of Earthquake Effects: The design accommodates the

propagation of earthquake waves and the resulting flexible deformations of the

terrain, leading to non-uniform stress changes on the building foundations, thus

enhancing the realism of the simulations.

Support for Three-dimensional Terrain Fluidity: The system supports the

transformation of virtual terrain into a three-dimensional fluid model. It allows for

the importation of buildings with foundations without the need to reconfigure the

binding program.

To facilitate the simulation of terrains moving akin to the Earth's crust during earthquake events,

we've harnessed a C++ program. This program associates the previously extracted earthquake

waveform data - "BH1", "BH2", and "BHZ" - with the "X", "Y", and "Z" axes, governing the terrain's

motion. Earthquake waveform data from the IRIS database exhibits a frequency of 40 Hz, implying

40 recorded samples every second. In our simulation, RESenv offers three distinct frame rates in

UE: 40 FPS, 90 FPS, and 240 FPS. These rates cater to different applications, including desktop

simulations, VR training, and high frame rate sensor data synthesis. For handling the data at 90 and

240 FPS rates, we employed the wavelet interpolation algorithm, a method renowned for its ability

to preserve signal details while increasing the sample rate (Yu et al., 2007).

3.4 Simulation

Upon completion of the data binding, our method can be executed in UE in Simulate In Editor (SIE)

mode (In-Editor Testing, Play and Simulate in Unreal Engine, 2024). It is worth noting that, unlike

traditional simulation approaches, our method inherits features from Unreal Engine, allowing all

virtual assets and fractured models to be interactive during run-time. Applications such as VR

search and rescue training and robotic dynamic obstacle avoidance will transition from static

scene training to dynamic training with time-varying properties. In this instance, a concrete frame
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and a brick wall are bound to a flat virtual ground. The earthquake data is sourced from the

magnitude 7.4 earthquake in Oaxaca, Mexico, on June 23, 2020, recorded by the seismograph

station coded as TEIG. The simulation lasts 360 seconds and runs at a frame rate of 40 FPS.

4 Experiment

In order to verify the efficacy of our approach, two earthquake simulation experiments with three

tasks were designed with the aim of providing synthetic visual data for AI training. 1) Two historical

earthquake events and two laboratory experiments were reproduced and simulated with damage to

buildings with four different materials. The similarity between real and simulated damaged buildings

was assessed using a pre-trained Vision Transformer (ViT) model. 2) Using GIS data, we recreated a

Japanese neighborhood and then conducted a 20 random endpoints robot path planning test in the

simulated post-earthquake area based on synthetic visual data. The completion rates of the robot's

path and the success rates of visual recognition en route are counted.

4.1 Realistic Simulation of Buildings

Four real-world earthquake-induced building damage scenarios are selected and re-created the

destruction in a simulated environment using RESenv to compare the accuracy of our approach.

Figure 6 presents the original references and simulation results of the four scenarios. Each

scenario simulates a building structure based on different materials. Two were simulated on a

laboratory shake table, and two were natural earthquakes (Michaelson, 2023; Team, 2023).

We obtained the building data and earthquake wave data of the two laboratory-simulated

scenarios via email correspondence. The earthquake wave data of the two real-world scenarios

were directly obtained from the IRIS database through the RESenv UI system, while the two

buildings were reconstructed from multiple viewpoints using multiple online references. All four

buildings were constructed in Blender, and surface textures were obtained from the Quixel

Megascans material library (Quixel Megascans, 2024). The simulation was carried out in UE 5.4 on

a Razor laptop with an RTX-3070 GPU, an AMD Ryzen 6900HX CPU, and 16GB of RAM as the

minimal requirement. The initial UE scenario was set to the default configuration.

To address the challenges arising from the inherent complexities of real-world building materials

and structures, such as material aging, non-uniformity, and construction errors, we adopted a more

exhaustive approach for similarity detection. Recognizing that a single simulation might not capture

the full extent of potential damages, we conducted 100 random pre-fracture simulations for each

building scenario to approximate the properties of real building materials iteratively. Following this

exhaustive pre-fracture simulation, to ascertain the similarity between the simulated results and

actual structural damage — especially in the context of robotic visual recognition tasks — we

employed a verified ViT deep learning model designed for feature similarity assessment. This

model was pre-trained on the widely-used ImageNet-21K dataset, and its efficacy has been

validated in research by Omini et al. (Omori & Hanyu, 2022). Images of real-world damaged
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buildings and those from our simulations were independently input into the ViT model to compute

their similarity. The results, based on the highest similarity scores achieved, are believed to best

represent the capabilities of our proposed method. This strategy not only captures the variability in

damage patterns but also underscores our approach's robustness in mimicking real-world

scenarios despite their inherent unpredictability and complexities. The final computational

outcomes are presented in Table 1.

Figure 6: Earthquake simulation using RESenv for four actual scenarios. Two laboratory experiments (columns 1-2)

and two actual buildings (columns 3-4) were chosen. Row 1: The original forms of four buildings before the

earthquake events. Row 2: Destruction of buildings following the earthquake events. Row 3: The 3D models are

recreated based on the actual buildings and are given textures and pre-fracture settings in RESenv. Row 4:

Destruction results of four buildings after RESenv earthquake simulation.
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Scenario Brick Wood Stone Concrete

Similarity 94.80% 90.07% 92.25% 89.34%

Best Attempt 57 83 22 48

Table 1: Similarity of the four scenarios simulated with RESenv over 100 attempts, with the best simulation run

indicated.

The results demonstrate that the simulations for all four structures attained a considerable degree

of resemblance to real-world scenarios. Our proposed earthquake simulation technique exhibits a

robust capability to accurately replicate the damage patterns induced by actual earthquake events

in buildings. The observed discrepancies in the outcomes could be attributed to variations in the

pre-fracture random factor setting of the 3D building materials, as compared to those of the

reference structures. Consequently, these disparities give rise to differences in the morphology and

movement trajectories of the fragmented masses within the simulation.

Figure 7: Multi-building scenario earthquake simulation experiments in RESenv. Task 1 is to perform a robot path

planning and obstacle avoidance test using the pre-trained DRL SLAM to verify the effectiveness of the earthquake

simulation scenario for robot training. Task 2 is to use SAM to perform image segmentation detection on synthetic

data from a RGB camera while the robot is traveling. Ultimately, the segmentation success rate will be counted. a:

buildings generated in CityEngine using GIS data. A rover robot is placed in the scenario to perform path-planning

tasks based on SLAM DRL. b: A record of 20 randomly selected endpoints for the path planning task. c: simulated

RGB camera view of the original scenario in UE. d: RGB camera view of the scenario after an earthquake simulation.

e: simulated depth camera view for SLAM DRL algorithm data input. f: RGB camera view with SAM image

segmentation.
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4.2 Scenario Simulation and Robotic Training

To evaluate the effectiveness of RESenv in conducting earthquake simulations within urban

settings featuring clusters of buildings for robotic training, two distinct tasks are designed. Initially,

the GIS data from a Japanese neighborhood were obtained via OpenStreetMap and subsequently

converted into a 3D scene utilizing CityEngine. The scene was then imported into UE. All buildings

within the scene were automatically anchored to the terrain using the program in RESenv, while the

terrain was linked to earthquake data. A robot model, sourced from RoverRobotics, was positioned

in the scene and equipped with simulated RGB and depth camera sensors (Figure 7.a, d, e). The

robot was assigned two tasks: 1) Utilizing a DRL model based on SLAM, as proposed by Shuhuan et

al. (Wen et al., 2020), the robot was instructed to randomly select 20 coordinates as endpoints for

path planning and obstacle avoidance testing within the simulated environment (Figure 7.b). The

ratio of the completed length of each path to its total length is recorded. This test aimed to verify

whether our simulation framework could provide effective earthquake scenarios for AI path-

planning methods with demonstrated efficacy. 2) Concurrently with Task 1, the Segment-Anything

Model (SAM)(model: ViT-H)(Kirillov et al., 2023) was selected as the state-of-the-art for

generalized image segmentation model to collect data from RGB sensors for object segmentation

(Figure 7.f). Image segmentation and its edge detection serve as the foundation for training AI

models and path-planning tasks.

Upon completing the aforementioned tasks, the results (4 typical in Tabel Table 2, full targets

revealed that in Task 1, pertaining to path planning, 80% of path-planning trials achieved a 100%

completion rate. When the input images have a resolution of 1550  1162 with a dilation kernel of

50 pixels, SAM achieved an overall 95% accuracy in detecting edges when compared to SAM-

processed ground truth. These results prove our simulated post-earthquake scenario can furnish

an effective image segmentation data source for visual recognition, thereby facilitating the training

of various visual AI models.

Tgt. Pt. Path Plan. UE Segment Ker 25 UE Segment Ker 50 UE + SAM Ker 25 UE + SAM Ker 50

1 Complete 81.2% 91.9% 89.9% 96.0%

8 Complete 76.9% 87.3% 96.4% 99.1%

14 96.55% 78.8% 90.1% 87.9% 95.2%

20 85.80% 74.2% 86.2% 90.4% 95.5%

Table 2: Success Rates of DRL SLAM Path Planning and Accuracy of Image Segmentation edges for 4 typical out of

20 Targets.

Key Findings and Unforeseen Challenges The findings indicate that our proposed earthquake

simulation approach effectively generates realistic urban destruction scenarios for robot training.

The high completion rates in Task 1 suggest that our simulation environment is capable of providing

challenging yet achievable path planning and obstacle avoidance test scenarios for AI algorithms.
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Moreover, in Task 2, we observed lower completion rates for some paths. Upon further inspection,

we attributed this not to the complexity of the urban scenario itself, but to the glare from the

virtual sun interfering with the simulated RGB camera used by the robot. Path-14, Path-20), leading

to visual recognition difficulties. This situation has been overlooked in studies using ideal laboratory

conditions and similar simulation platforms. This highlights the importance of considering the

complexity and multi-factorial nature of real-world environments when designing and testing AI

algorithms for disaster response and recovery, rather than focusing solely on object simulation.

5 Discussion and Future Work

Discussion Our study introduces an innovative earthquake simulation environment, designed to

generate realistic urban scenarios for VR and robot training in the context of disaster response and

recovery. Using computer vision techniques such as ViT, DRL SLAM, SAM, and our proposed

earthquake simulation method, we have demonstrated the effectiveness of our approach by

completing three distinct tasks: similarity, path-finding success rate, and segmentation edge

accuracy. Our results show the environment is feasible for the deployment of downstream tasks.

This paper significantly expands upon the conference paper by providing a detailed description and

discussion of the RESenv Material Calibration Workflow, and it refines the method for binding

building foundations using the UEPCA in UE5 (Sun et al., 2023). These enhancements have led to

further improvements in the accuracy of building fracture simulations in RESenv.

Limitation While our work introduces pioneering advancements in earthquake simulation, it is

subject to certain limitations. Primarily, our simulations focus mainly on the impacts of earthquakes

on buildings, abstracting more complex dynamics such as foundation flexing and land movements.

Consequently, our model may not fully capture the real-world nuances of how foundations degrade

or shift during earthquake events currently. Furthermore, the parameters used to represent building

materials are derived from idealized configurations, which may not accurately reflect the diversity

of building types, architectures, and materials influenced by varying cultural, geographical, and

technological factors. Lastly, our simulation environment does not account for variable

environmental conditions such as changing lighting or obstructive elements like smoke and dust,

which could significantly affect the performance and behavior of AI algorithms in such scenarios.

Future Works Our future endeavors in developing RESenv are aimed at addressing three main

areas to enhance the platform’s capability and accessibility. Firstly, we plan to establish an online

database for calibrated materials used within RESenv, expanding it to include a comprehensive

range of commonly used building materials. This will facilitate the use of RESenv by developers

who are not familiar with Ansys, eliminating the need for them to perform their own material

calibrations.

Secondly, we aim to focus on improving the current static terrain model by developing a two-

dimensional dynamic terrain that accurately reflects the deformations caused by seismic waves.

This advancement will significantly enhance the realism and scientific accuracy of our earthquake
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simulations.

Thirdly, we intend to enrich the simulation environment in RESenv by incorporating dynamic

environmental factors such as changing lighting conditions, smoke, and dust. These elements will

add to the realism of the scenarios and are expected to improve the robustness of AI and robotics

training within these complex and variable conditions.

In the long term, we plan to extend our methodology to other types of disasters, including floods

and hurricanes. This expansion will not only broaden the scope of RESenv’s applicability but also

contribute valuable insights into the simulation and mitigation of various natural disasters.

6 Demo
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