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Abstract: Accurate acoustic simulation is crucial for immersion, yet many industry pipelines

overlook wave phenomena, especially at low frequencies. We present a 2D finite-difference time-

domain (FDTD) framework integrated with Unreal Engine that models sound as a wave process and

embeds occlusion, diffraction, reflection, and interference. Scenes are top-down projected to a 2D

grid to derive obstacle masks and boundary conditions. A Python FDTD solver drives a sine sweep

at the source, while virtual quadraphonic microphone arrays capture pressure responses at listener

positions. Deconvolution produces multi-channel, direction-aware impulse responses that are

injected into Unreal Engine’s audio pipeline for dynamic playback. Benchmarks align with analytical

expectations, and we outline hybrid extensions for practical deployment. The approach offers a

tractable, wave-based alternative for interactive applications.

Tags: HCI, Sound, Multimedia

1 Introduction

The current state of acoustic modeling sees the widespread use of geometric acoustics (GA) such

as ray-tracing and beam-tracing to characterize the acoustic properties of virtual environments

(Savioja & Svensson, 2015). While these methods are generally considered efficient and accurate

for modeling higher frequencies, GA models often require additional heuristics to capture lower

frequency wave interactions (Raghuvanshi, 2021; Savioja & Svensson, 2015), prompting increased

interest in exploring the use of more inclusive acoustic models.

Wave-based models offer a unified method of simulating sound propagation by directly solving the

acoustic wave equation, which inherently incorporates diffraction, interference, and reflection
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throughout the audible frequency range (Hamilton & Bilbao, 2020; Raghuvanshi, 2021). One

commonly employed wave-based technique is the finite-difference time-domain (FDTD) (Hamilton &

Bilbao, 2020; Ostashev et al., 2005), which discretizes the time and spatial domain into a grid and

iteratively solves for pressure wave propagation. Although this method can become

computationally expensive for larger domains or longer simulation times, recent advances in

parallel computing have made its commercial-scale application increasingly viable.

In this paper, a proposal for designing a two-dimensional FDTD framework to model the acoustical

response of a top-down outdoor environment in Unreal Engine is demonstrated. A sine sweep is

used to acoustically excite the domain, allowing virtual microphone arrays at predefined listener

positions to capture pressure field changes. The corresponding impulse responses are then

extracted from the recorded pressure fields before being convolved with arbitrary sources during

runtime. This approach facilitates seamless playback and a dynamic listening experience, offering

more physically accurate diffraction and interference modeling than conventional geometric

acoustics met-hods.

2 The Finite-Difference Time-Domain (FDTD) Method

2.1 Euler and Continuity Differential Equations

The conventional FDTD for acoustics is fundamentally ba- sed on the first-order Euler and

continuity differential equations (Jeong & Lam, 2010), which in a lossless medium can be expressed

as:

where p is the sound pressure, v is the particle velocity vector,  is the ambient density of the

medium, c is the speed of sound in the medium. To solve these equations numerically, discretization

is necessary.

2.2 Leapfrog Time Stepping and Staggered Spatial Grid

When adapted from electromagnetics to acoustics, Yee’s algorithm discretizes the wave equation

in both space and time using a time stepping scheme and staggered spatial grid (Zahari et al., 2015,

p. M asoud::07). For each time step, velocity is updated at half-integer time steps ( ) and

pressure fields at integer time steps ( ). This temporal offset creates a 'leapfrogging' pattern

between the two field updates (Jeong & Lam, 2010; Masoud et al., 2022; Zahari et al., 2015). In the

spatial domain, a staggered spatial grid is employed such that for each grid cell, the pressure is
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stored in the cell center and velocity components are located at cell edges. Spatial derivatives are

approximated using central difference methods (Masoud et al., 2022; Zahari et al., 2015). The

discretized velocity and pressure update equations are given as:

where  is the current time step,  represent the 2D Cartesian coordinates,  are the velocity

components along the  direction respectively,  is size of the time step,  are spatial

step sizes along the  direction respectively and  denote the indices of the 2D grid along the ,

 axes respectively. Equations (3), (4), and (5) serve as the foundational update rules in the FDTD

loop.

Figure 1: Illustration of the staggered spatial grid, defining the spatial relationships between pressure and velocity

fields. Pressure fields are located at the grid cell center and the velocity fields are positioned at the edge of each

cell.
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3 Project Architecture

This acoustic simulation pipeline consists mainly of these four sequential stages:

Preprocessing in Unreal Engine

Wave propagation simulation using FDTD in Python with sine sweep injection

Impulse response extraction through deconvolution of pressure field recordings

Real-time acoustic rendering in Unreal Engine by convolving pre-computed impulse

responses with arbitrary source signals

4 Preprocessing in Unreal Engine

The test environment in Unreal Engine is conceptualized as an outdoor space modeled with a plane

of dimensions  meters by  meters. Vowels of various configurations are

generated on the surface of the plane to function as acoustical barriers. A single sound source is

positioned at a fixed point, while multiple listener locations (L1 through L7) are distributed across

the plane.

At each of these listener positions, a quadraphonic virtual microphone cluster is used to capture

the acoustic responses in 4.0 surround sound. Conceptually, each ‘listener’ thus represents a tight

four-microphone array, allowing for multi-channel spatial data collection. By exciting the

environment with a sine sweep, the multi-channel recordings from each quadraphonic cluster are

processed into impulse responses that capture both the spatial distribution and directional

characteristics of the sound field defined by the given listener's orientation and location.

Figure 2: The image represents the acoustic simulation domain where the sound source is denoted by a large red

sphere positioned at the center. The listener locations, labeled L1 to L7, are marked with cyan triangles indicating

their respective orientations. Each listener is surrounded by clusters of virtual microphones, represented by blue

spheres, which capture spatialized acoustic data. The gray blocks scattered throughout the domain function as

acoustic barriers.

!nteractives Preprint | 10.64560/58989191

04

https://interactives.pub/


4.1 Discretization

The initial step in preprocessing involves discretizing the plane into a spatial grid. Each grid cell is

defined by a spatial step size in both the  and  directions. In this implementation, the step

sizes for the  and  directions are assumed to be equal, allowing the spatial step size to be

expressed as a single variable, , where . It is shown in (Zahari et al., 2015) that

to reduce the likelihood of numerical dispersion, the spatial step should be at least a factor of 10

smaller than or equal to the shortest wavelength in the simulation. This implies that  can be

derived as:

where  is the minimum wavelength,  is the maximum speed of sound in all medium(s) of

simulation and  is the highest frequency to be captured in the simulation. The total number of

spatial steps in each axis of the domain,  and , can then be obtained by dividing  and  by

the previously derived spatial step size .

4.2 Obstacle Mask Generation

A classification process determines whether each grid cell contains an obstacle. The process

begins by identifying acoustical obstacles through an FGameplayTag based framework, where

each acoustical barrier receives a specific tag. A vertical line trace is then performed from the

center of each grid cell in the positive z-direction. The grid cell is classified as 0 if the line trace

intersects with a tagged obstacle, and 1 otherwise. This classification process, executed iteratively

across all grid cells, generates an obstacle mask.

Figure 3: Illustration of the discretization process. The (lighter) green lines represent no collisions by the line traces

(free space) and the (darker) red lines indicate line trace intersections with acoustical barriers.
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5 FDTD Implementation

5.1 Defining Time-Dependent Simulation Parameters

For a given simulation time , it follows that a stable time step size for a two dimensional FDTD

simulation can be derived based on the Courant-Friedrichs-Lewy condition as (Kowalczyk & van

Walstijn, 2011):

where  is the size of the time step,  is the spatial step size and  is the maximum speed of

sound accounting for all materials present in the simulation. Consequently, the total time steps 

required for a simulation of time  seconds can be determined by dividing  by the time step size

.

5.2 Boundary Condition: PML

One of the principal challenges in wave-based numerical simulations is properly replicating an

unbounded domain. Traditional absorbing or non-reflective boundary conditio-ns can still produce

unwanted reflections, undermining accuracy near the domain edges. To address this, a Perfectly

Matched Layer (PML) formulation is adopted, originally introduced by Bérenger (Bérenger, 1994),

which provides minimal reflections while strongly attenuating outgoing waves.

PMLs are commonly defined by a thickness of  cells that are applied at the perimeter of the

simulation domain to manage boundary wave behavior. The gradual dissipation in this layer reduces

reflections, mimicking free-field or open-air conditions.

In this implementation, the PML is characterized by a spatially varying damping coefficient,

, that transitions from a maximum value, , at the boundary to zero in the interior of the

domain. Mathematically, the PML is constructed by separate one-dimensional ramps  and

, each of width  cells on both ends of the domain in the x and y directions, respectively.

The total damping in two dimensions is then obtained by summing these contributions:

with the damping terms for each axis defined as:

!nteractives Preprint | 10.64560/58989191

06

https://interactives.pub/


where  represents the two-dimension PML profile in both  directions,  represent the

indices of the spatial grid on both  directions respectively,  represent the maximum

attenuation strength in the PML,  represent the total number of spatial steps in the  and 

directions of the domain and  represent the thickness (number of grid cells) of the PML.

5.3 Source Model: Transparent Source

Impulse response recordings in acoustics commonly rely on an exponential (logarithmic) sine

sweep (ESS) to excite the environment with equal energy per octave band (Chan, 2010). A key

reason for employing an exponential sine sweep is its compatibility with Farina’s inverse filter

(described in Section 7), allowing for clear separation of harmonic distortion and a clean extraction

of the impulse response (Farina, 2000). In this FDTD scheme, the sweep is employed as a time

domain forcing function and a transparent source, applied to the particle velocity fields at each

time step. The transparent source (as opposed to a hard source) was chosen for the simulation as it

adds energy incrementally to the field, allowing it to remain mostly unobtrusive to incoming waves.

This approach avoids spurious reflections at the source and preserves the physical fidelity of the

simulation (Taflove & Hagness, 2005).

Spatially, the source is distributed over a small Gaussian footprint centered at a given location,

rather than being confined to a single grid cell. Distributing the source over several cells smooths

the injection into the grid, particularly at higher frequencies, and reduces abrupt spatial gradients

that could otherwise lead to numerical artifacts (Lin, 2010). To ensure the source region spans at

least a quarter-wavelength in all directions, or two grid cells, whichever is larger, the injection

width is determined by:

{#equation:Source——Width}

where  represents width of the source on both the  and  directions.

5.4 FDTD Loop

This section describes the time-stepping procedure in which the velocity and pressure fields are

iteratively updated. During each time step, pressure values at the virtual microphone locations (see

Figure 2) are recorded for subsequent impulse response extraction. The update loop consists of

four main sequences:
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Velocity field updates

Source injection

Reflections from Obstacle

Pressure field updates

Referring back to Equation (3), the  and  components of the velocity field at each time step can

be expressed in Python as:

To incorporate Perfectly Matched Layer (PML) boundary damping, the updated velocity fields (v_x),

and (v_y), are multiplied by damping coefficients derived during the PML initialization step. The PML

region is defined around the edges of the computational domain, and each cell within this region is

assigned a specific damping factor to gradually attenuate outgoing waves and minimize artificial

reflections from the boundaries.

Next, a sine sweep source is introduced by injecting its time-varying pressure (or velocity) into the

grid cells where the source is located. This procedure imposes a prescribed acoustic excitation that

propagates through the domain according to the specified sweep function.

Obstacle reflections are enforced by nullifying the velocity components (v_x), and (v_y), in the

obstacle cells. The obstacle mask is generated from geometry data provided by Unreal Engine,

where each obstacle cell is considered perfectly rigid. Setting the velocity to zero in these cells

effectively simulates total reflection, thus preventing any acoustic waves from propagating through

obstacle regions.

Finally, the pressure field is updated by incorporating the spatial derivatives of the velocity fields.

These derivatives are computed as differences in the velocity components across grid cells:

Translated from Equation (5) into code form, the pressure field at the interior grid points is then

updated using:
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This four-step sequence : velocity update, source injection, obstacle masking, and pressure update,

is repeated for each time step, thereby propagating acoustic waves thro-ugh the simulation

domain. At specified intervals, the pressure values at virtual microphone locations are stored,

allowing for later analysis and the extraction of impulse responses.

6 Simulation Outcomes and Interpretations

6.1 Pressure Maps

The following normalized 2D acoustic traversal pressure maps represent the evolution of the

pressure field in the Unreal Engine domain with dimensions  by  (refer to Figure

2) in progressive time steps for a period of 5 seconds. The domain was excited using a 2.5-second

exponential sine signal with a frequency sweep from 20 Hz to 3 kHz placed at the center

 of the domain. The pressure maps represent the absolute normalized amplitude of

the acoustic pressure in the domain. Red areas correspond to high-pressure zones or areas with

high energy induction, while darker, blue region represents low-pressure zones or areas with

minimal excitation. Acoustic obstacles are the dark blue voxelized areas in the map. They are taken

to be rigid boundaries, exhibiting perfect reflection so there is no velocity and pressure changes in

those zones.

Figure 4: Two‐dimensional pressure field at t = 0.8983s. At this early stage of the simulation, the initial wavefront

has propagated outward from the source (indicated by the faint red glow at the center) and begun to interact with

nearby obstacles. Reflections and partial shadowing of the wave can be seen where the acoustic field meets the

rectangular blocks, and the color scale highlights regions of higher (yellow–red) and lower (blue) pressure

amplitude.
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Figure 5: Two‐dimensional pressure field at t = 1.2833s, showing more pronounced scattering and interference

patterns around the obstacles. The ongoing sine sweep continues to excite the domain, producing higher amplitude

regions (in red/yellow) and nodes (darker regions).

Figure 6: Two‐dimensional pressure field at t = 1.7967s. As higher frequencies are swept, the shorter wavelengths

resolve ever-smaller features, which manifests as a granular (speckle-like) interference pattern at later times due to

the increasing contribution of high-frequency components.
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Figure 7: Two‐dimensional pressure field at t = 2.0417s, near the end of the sine sweep. By this point, the field is

dominated by interference of the various wavefronts reflecting from the perfectly reflecting obstacles. The near‐

uniform blue background away from the scatterers indicates lower pressure amplitude regions as the sweep energy

diminishes.

6.2 Simulation Result Discussion

6.2.1 Evaluation of Pressure Maps

In Figures 4–7, successive snapshots of the pressure field are illustrated within the computational

domain as the sine sweep progresses and interacts with perfectly reflective obstacles (shown in

dark blue). The rectangular barriers impose rigid boundary conditions, causing reflections and

partial shadowing of the wavefronts. In Figure 4, the faint red glow near the center signifies the

gradual accumulation of energy injected by the source; low‐frequency components dominate early

on, giving rise to relatively smooth wavefronts that begin to reflect off the obstacles.

As the sine sweep transitions to higher frequencies in Figure 5, the wavefronts become more

tightly spaced, leading to more complex interference patterns. Elevated pressure amplitudes

(indicated by yellow–red regions) are particularly noticeable near the source, where overlapping

wavefronts reinforce one another. By Figure 6, the sweep is nearing completion, and the intricate

pressure distributions reveal the cumulative effects of reflection, diffraction, and interference

around and between the rectangular blocks. The interplay of multiple frequencies is clearly visible

in the interference fringes that form in the open regions of the domain.

At t = 2.0417s, Figure 7 shows that much of the acoustic energy has been absorbed by the perfectly

matched layers (PMLs) at the boundaries and that new energy is being injected at a slower rate
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than the amount of energy the PMLs are absorbing. Only residual reflections dominate in the

vicinity of the source and the obstacles, appearing as localized pockets of higher acoustic

pressure. In this later snapshot, the wave has reverberated throughout the domain several times,

creating a sparsely speckled field. Pressure amplitudes have become more evenly dispersed,

reflecting a near-reverberant state where ongoing reflections continue but no distinct wavefronts

visible.

7 De-Convolution : Farina Inverse Filter

7.1 Resampling

The recorded two-dimensional pressure field array essentially represent the domain’s acoustic

response to the sine sweep. At each of the predefined listener positions (( L_1 ) – ( L_7 )), contains a

cluster of four equally spaced virtual omnidirectional microphones. The pressure field changes at

each of the microphone locations are captured for subsequent deconvolution, thereby extracting

the impulse responses at their respective locations. With ( N_t = 214,285 ) total time steps, the

effective sampling rate is ( f_s = 42,857 ) Hz. Since the highest frequency in the sine sweep is (

f_{max} = 3,000 ) Hz, it follows that  satisfying the Nyquist criterion. To facilitate futher

audio processing, the signals can then be safely resampled to the standard audio rate of ( 44.1 )

kHz.

7.2 Farina’s Inverse Filter for Exponential Sine Sweep (ESS) De-

Convolution

When a sine sweep is injected into a system with an impulse response , the recorded signal 

can be given as the convolution of the sine sweep and impulse response:

where  is the recorded signal,  is the sine sweep and  represents the impulse response.

To solve for the impulse response, Farina gives us a three-step procedure to formulate the inverse

filter (Farina, 2000):

Time-reverse the original sweep signal,

Apply an exponential amplitude correction term to the time reversed sweep,

Convolve the result with the recorded signal.

Mathematically, the derivation of the system's impulse response from the recorded signal can be

represented as:
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given that:

where  represents the time-reverse sine sweep,  is the duration of the sweep,  and 

are the end and start of the sweep's frequency values respectively. Figure 9 below shows the

rendered four channel impulse response file after de-convolution:

Figure 8: The wave file of the quadraphonic impulse response (IR) corresponding to listening position L2. Each of the

four channels is labeled to reflect the channel configuration of a true stereo IR format. The true stereo IR concept

will be explained in the next section.
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8 Implementation in Unreal Engine

8.1 True Stereo Impulse Responses

With each of the listener positions representing a four microphone array, four separate mono

impulse responses were extracted for a single reference point. The motivation behind capturing

four tracks is to approximate a form of true stereo impulse response in a single pass.

Conventionally, a true stereo impulse response is a quadraphonic (four-channel) recording that

preserves the inter-aural time differences and directional cues of the reflections, thereby improving

the sense of localization and depth in the stereo field (Steinberg Media Technologies GmbH, 2019).

A typical true stereo capture can be achieved by performing two separate recordings to obtain two

stereo files (Christian Knufinke Software, 2010):

First pass: The source is placed closer to one microphone (e.g., the left), and a test

signal (such as a sine sweep) is played and recorded.

Second pass: The source is then placed closer to the other microphone (the right),

and the same test signal is recorded once more.

From these two passes, a four-channel impulse response can be derived:

These four channels capture how the sound propagates differently when the source is near one

microphone versus the other, preserving directional information and enhancing the spatial

characteristics in subsequent playback.

In the present work, instead of running two separate FDTD simulations (one for each source

position), a single simulation is performed while placing four microphones at fixed positions around

the listening point. By doing so, the equivalent of these two passes is effectively captured in one

go, because the FDTD grid simultaneously computes sound propagation to all microphones in the

model. Each microphone's position and orientation are determined by its cluster's spatial

relationship to the listener. This arrangement categorizes the microphones into four groups: front-

left, front-right, rear-left, and rear-right. In the context of a "true stereo" structure:
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Front-left corresponds to L → L

Rear-right corresponds to L → R

Front-right corresponds to R → R

Rear-left corresponds to R → L

The channels in the quadraphonic WAV file are structured in this same sequence, ensuring proper

spatial alignment in the recording. Although it is not an exact reproduction of the standard two-

pass technique, it preserves many of the spatial benefits, offering improved localization and depth

compared to a conventional single-channel or single-stereo impulse response.

8.2 Head Orientation and Energy Distribution Across IR Channels

As the listener’s orientation changes in Unreal Engine, the 3D panner of a given sound source sends

more or less of the source signal into the left or right inputs of the true‐stereo convolution reverb.

This causes the relative energy in each of the four IR channels (L→L, L→R, R→L, R→R) to shift

accordingly. For example, if the listener’s right ear is facing the source, the panner emphasizes the

right input, making the front‐right (R→R) and rear‐left (R→L) channels more prominent in the

resulting reverb. Conversely, if the listener faces the source directly, the panner balances the

source signal between both inputs, so all four IR channels contribute more evenly. This of course

assummes the source is 3D and pannable. Figure 10 establishes the relationship between head

orientation and energy distribution in the four channel true stereo impulse response for a given 3D

source.

Figure 9: Illustration of the relationship between head orientation and energy distribution in the quadraphonic, true

stereo impulse response (IR) in Unreal Engine. When the listener’s right ear is facing the source, most of the IR

energy contribution comes from the front-right channel and rear-left channel indicated by the shaded circles.
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Each of the four-channel impulse responses (IRs) represents the acoustic characteristics of a

specific region within the environment for a corresponding source location. During playback, these

IR clusters are categorized as either active or inactive, depending on their relevance to the

listener's position. In Unreal Engine (UE), these impulse responses are implemented as an effect

preset SubmixEffectConvolutionReverbPreset, which is assigned to the SubmixSends array in the

source configuration.

At any given time, two active four-channel IRs are convolved with the source, meaning the Submix

Sends array contains two active elements. The send amounts for these active IRs are dynamically

weighted based on the listener's position relative to them. The contribution of each cluster is

determined by the listener’s distance to both active clusters—moving closer to Cluster A increases

its contribution while reducing Cluster B’s contribution.

If the send amount of one cluster falls below a predefined threshold, the system identifies the next

closest cluster and replaces the least relevant one. This allows the Submix Sends array to function

as a circular buffer, ensuring a smooth and continuous transition between impulse responses as the

listener moves through the environment.

9 Accuracy Analysis and Benchmarks

A comparison of the two-dimensional FDTD response with an analytical solution constructed using

the free space Gre-en's function was performed to verify the FDTD precision. For each test, a

Ricker wavelet of center‐frequency  is injected at the source grid cell; the analytical impulse

response at the receiver is obtained by convolving the Green’s function with the same Ricker pulse.

Both the numerical and analytical traces are sampled in equal time step and at the same source-

listener locations to isolate dispersion‐driven errors as a function of frequency. The normalized

root‐mean‐square error and the peak‐arri-val‐time difference was computed at each center-

frequency. This frequency‐dependent error characterization demonstrates that the grid‐spacing

criterion maintains amplitude errors below 4% and phase error below  across the operating

frequency range

Figure 10: Simulated (FDTD) vs Analytical time-domain pressure responses to a 500Hz Ricker pulse input signal.
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 Hz NRMSE (%) Arrival Time (ms)

250 2.3 0.2

500 3.6 0.5

1 K 3.7 1.1

3 K 3.9 1.2

Table 1: Frequency-dependent validation results. For each Ricker wavelet center-frequency (f_0) (250 Hz, 500 Hz, 1

kHz, 3 kHz), the table reports the normalized root-mean-square error (NRMSE, %) and the peak-arrival-time

difference (Delta t) (ms) against the analytical Green’s-function solution

Simulated (FDTD) vs Analytical time-domain pressure responses to a 500Hz Ricker pulse input signal.

10 Constraints and Improvements

A constraint for this method is that to capture higher frequency ranges, the complexity and

resulting processing time becomes significant even with parallel computing. The amount of spatial

resolution needed and thus number of spatial grid can also incur longer simulation time. A remedy

and improvement to the current workflow might be to incorporate ray or beam tracing for higher

frequency response capture, hybridizing the two workflows and enabling the distribution of

computational complexity over two models.
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11 Conclusion

The proposed workflow demonstrates a working model of a wave-based FDTD acoustic solver in

Unreal Engine, yiel-ding physically accurate low-frequency sound modeling. Advances in parallel

computing have increased FDTD’s efficiency but to achieve full-spectrum sound rendering suitable

for production use, a hybrid scheme is recommended: FDTD handles lower frequency wave

phenomena, while geometric methods captures high frequency content. Such a division preserves

FDTD’s fidelity where it is most need-ed and leverages the efficiency of geometric acoustics for

short wavelength behavior, significantly reducing overall computation time. This complementary

pairing provides a scalable, high-fidelity acoustic rendering solution for gam-es, VR/AR, and

architectural simulations.
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